

¹Andrea Vander Woude, ¹Dack Stuart, ²Steve Ruberg, ¹Thomas Johengen, ³Brandi McCarty, ³Jim Churnside, ¹Danna Palladino, ¹Ashley Burtner ¹University of Michigan Cooperative Institute of Limnology and Ecosystems Research, ²NOAA Great Lakes Environmental Research Laboratory, ³NOAA Earth System Research Laboratory

Research Question: Are chlorophyll *a* and phycocyanin in blue-green algae detectable from hyperspectral sensors? **Why?:** To warn water intake managers in the Western basin of Lake Erie when any bloom is present near their intake

Airborne Resonon Pika II

Satlantic Hypergun Hand-held Sensor

Number of channel

Hyperspectral ocean color sensor that measures water-leaving spectral radiance and sky downwelling irradiance.

 Spectral Range
 400-800 nm

 Spectral Resolution
 3 nm

 Number of channels
 137

 Field of view
 3"

Cloud detection & MODTRAN Atmospheric Correction (NOAA ESRL)

- MODTRAN CLEAR SKY
- τ(550) = 0.2
- L_{aerosol} calculated using black surface (looking down from aircraft)
 E calculated 2015 looking up from
- surface
 L_{sky} calculated as 0.2*radiance
- calculated looking up from surface

 $Rrs = \frac{L_{measured} - L_{aerosol} - L_{sky}}{E}$

Future Work

- Functional group maps of Lake Erie with a combination of absorption and backscatter spectra
- 4 different phytoplankton groups.
- End product will be maps of functional groups for each over flight.

NASA Coincident Flyovers & Intercalibration

2015 coincident flyovers over Lake Erie and intercalibration of sensors

Water Intake Locations

Spectral Range	400-900 nm
Spatial Resolution	2.1 nm (depending on altitude)
Number of channels	240
Field of View	16°

Satlantic Hypergun Hand-held Sensor

Hyperspectral ocean color sensor that measures water-leaving spectral radiance and sky downwelling irradiance.

Spectral Range	400-800 nm
Spectral Resolution	3 nm
Number of channels	137
Field of view	3°

¹Andrea Vander Woude, ¹Dack Stuart, ²Steve Ruberg, ¹Thomas Johengen, ³Brandi McCarty, ³Jim Churnside, ¹Danna Palladino, ¹Ashley Burtner ¹University of Michigan Cooperative Institute of Limnology and Ecosystems Research, ²NOAA Great Lakes Environmental Research Laboratory, 3NOAA Earth System Research Laboratory

Research Question: Are chlorophyll a and phycocyanin in blue-green algae detectable from hyperspectral sensors? Why?: To warn water intake managers in the Western basin of Lake Erie when any bloom is present near their intake.

Airborne Resonon Pika II

Satlantic Hypergun Hand-held Sensor

Number of channel

ocean color sensor that measures waterleaving spectral radiance and sky downwelling irradiance.

• L(550) < 4000 uflick

· Morphological opening

with 5x5 pixel kernel.

Future Work

- Functional group maps of Lake Erie with a combination of absorption and backscatter spectra
- 4 different phytoplankton groups.
- End product will be maps of functional groups for each over flight.

NASA Coincident Flyovers & Intercalibration

2015 coincident flyovers over Lake Erie and intercalibration of sensors

MODTRAN CLEAR SKY

L_{aerosol} calculated using black surface

(looking down from aircraft)

. E calculated 2015 looking up from

L_{sky} calculated as 0.2*radiance

calculated looking up from surface

Airborne Resonon Pika II Sensor - Results

Moore Curve Fitting Chlorophyll (µg/L) $X = R_{rs}(681)^2/(R_{rs}(664) * R_{rs}(709))$ Chl = $10^{-1.1280*log10(x)^2-2.7796*log10(x)+1.0422}$

Mishra Phycocyanin (PC - μg/L) Ψ= R_{rs} (560)/ R_{rs} (665) PC3=(R_{rs} (620)-1-Ψ* R_{rs} (665)-1)* R_{rs} (778) PC = 480.92*PC₃+123.23

Cloud detection & MODTRAN Atmospheric Correction (NOAA ESRL)

- *L*(550) < 4000 uflick
- Morphological opening with 5x5 pixel kernel.

- MODTRAN CLEAR SKY
- $\tau(550) = 0.2$
- L_{aerosol} calculated using black surface (looking down from aircraft)
- E calculated 2015 looking up from surface
- L_{sky} calculated as 0.2*radiance calculated looking up from surface

$$Rrs = \frac{L_{measured} - L_{aerosol} - L_{sky}}{E}$$

¹Andrea Vander Woude, ¹Dack Stuart, ²Steve Ruberg, ¹Thomas Johengen, ³Brandi McCarty, ³Jim Churnside, ¹Danna Palladino, ¹Ashley Burtner ¹University of Michigan Cooperative Institute of Limnology and Ecosystems Research, ²NOAA Great Lakes Environmental Research Laboratory, 3NOAA Earth System Research Laboratory

Research Question: Are chlorophyll a and phycocyanin in blue-green algae detectable from hyperspectral sensors? Why?: To warn water intake managers in the Western basin of Lake Erie when any bloom is present near their intake.

Airborne Resonon Pika II

Satlantic Hypergun Hand-held Sensor

Number of channel

ocean color sensor that measures waterleaving spectral radiance and sky downwelling irradiance.

• L(550) < 4000 uflick

· Morphological opening

with 5x5 pixel kernel.

Future Work

- Functional group maps of Lake Erie with a combination of absorption and backscatter spectra
- 4 different phytoplankton groups.
- End product will be maps of functional groups for each over flight.

NASA Coincident Flyovers & Intercalibration

2015 coincident flyovers over Lake Erie and intercalibration of sensors

MODTRAN CLEAR SKY

L_{aerosol} calculated using black surface

(looking down from aircraft)

. E calculated 2015 looking up from

L_{sky} calculated as 0.2*radiance

calculated looking up from surface

Hand-held Satlantic Hypergun Sensor -

¹Andrea Vander Woude, ¹Dack Stuart, ²Steve Ruberg, ¹Thomas Johengen, ³Brandi McCarty, ³Jim Churnside, ¹Danna Palladino, ¹Ashley Burtner ¹University of Michigan Cooperative Institute of Limnology and Ecosystems Research, ²NOAA Great Lakes Environmental Research Laboratory, 3NOAA Earth System Research Laboratory

Research Question: Are chlorophyll a and phycocyanin in blue-green algae detectable from hyperspectral sensors? Why?: To warn water intake managers in the Western basin of Lake Erie when any bloom is present near their intake.

Airborne Resonon Pika II

Satlantic Hypergun Hand-held Sensor

Number of channel

ocean color sensor that measures waterleaving spectral radiance and sky downwelling irradiance.

• L(550) < 4000 uflick

· Morphological opening

with 5x5 pixel kernel.

Future Work

- Functional group maps of Lake Erie with a combination of absorption and backscatter spectra
- 4 different phytoplankton groups.
- End product will be maps of functional groups for each over flight.

NASA Coincident Flyovers & Intercalibration

2015 coincident flyovers over Lake Erie and intercalibration of sensors

MODTRAN CLEAR SKY

L_{aerosol} calculated using black surface

(looking down from aircraft)

. E calculated 2015 looking up from

L_{sky} calculated as 0.2*radiance

calculated looking up from surface

¹Andrea Vander Woude, ¹Dack Stuart, ²Steve Ruberg, ¹Thomas Johengen, ³Brandi McCarty, ³Jim Churnside, ¹Danna Palladino, ¹Ashley Burtner ¹University of Michigan Cooperative Institute of Limnology and Ecosystems Research, ²NOAA Great Lakes Environmental Research Laboratory, 3NOAA Earth System Research Laboratory

Research Question: Are chlorophyll a and phycocyanin in blue-green algae detectable from hyperspectral sensors? Why?: To warn water intake managers in the Western basin of Lake Erie when any bloom is present near their intake.

Airborne Resonon Pika II

Satlantic Hypergun Hand-held Sensor

Number of channel

ocean color sensor that measures waterleaving spectral radiance and sky downwelling irradiance.

• L(550) < 4000 uflick

· Morphological opening

with 5x5 pixel kernel.

Future Work

- Functional group maps of Lake Erie with a combination of absorption and backscatter spectra
- 4 different phytoplankton groups.
- End product will be maps of functional groups for each over flight.

NASA Coincident Flyovers & Intercalibration

2015 coincident flyovers over Lake Erie and intercalibration of sensors

MODTRAN CLEAR SKY

L_{aerosol} calculated using black surface

(looking down from aircraft)

. E calculated 2015 looking up from

L_{sky} calculated as 0.2*radiance

calculated looking up from surface

NASA Coincident Flyovers & Intercalibration

2015 coincident flyovers over Lake Erie and intercalibration of sensors

8/17 8/24 8/31 9/14 9/28 10/19 10/22 10/26

Future Work

- Functional group maps of Lake Erie with a combination of absorption and backscatter spectra
- 4 different phytoplankton groups.
- End product will be maps of functional groups for each over flight.

http://www.plingfactory.de/Science/Atlas/Kennkarten%20Algen/01_e-algae/

Questions?

